
Activity Graphs

An activity-node graph has nodes that represent
activities and the time they take to complete. An
edge such as

X t1 Y t2

indicates that X must be completed before Y begins.
X takes time t1 and Y takes time t2. Here is a typical
activity graph:

start

A3

B2

C3

D2

E1

F3

G2

H4

I1
finish

s

start

A3

B2

C3

D2

E1

F3

G2

H4

I1
finish

s

Clicker Q: Here is the kind of information we'd like
to get from this graph: If the nodes on this activity
graph represent the parts of a project, how long
will it take to complete the project?

A. 6
B. 8
C. 10
D. 21 (the sum of all the times)

start

A3

B2

C3

D2

E1

F3

G2

H4

I1
finish

s

Anothre Clicker Q: If we start both A and B at time
0, what is the earliest time we could complete D?

A. 2
B. 3
C. 4
D. 5
E. 7

start

A3

B2

C3

D2

E1

F3

G2

H4

I1
finish

s

One more: Suppose part D takes time 3 instead of
time 2. Will that delay the completion time of
part F?

A. No
B. Yes

We will find algorithms that answer questions
like this.

We don't have any algorithms for exploring graphs
where the costs are in the nodes themselves, so we
turn this into an event-node graph in which the nodes
represent the completion of an event and the edges
represent the time the event takes.

Here is an algorithm for the conversion:
A. If Y has only one incoming edge in the event

graph:

X t1 Y t2

replace this edge by one with cost t2 in the event graph:

X Y
t2

B. If Y has multiple incoming edges in the activity graph,

X1 t1

X2 t2

X3 t3

Y t

make the corresponding edges in the event graph have cost
0, split Y into 2 nodes Y and Y', and make the edge from Y to
Y' have weight t

X1

X2

X3

Y Y'

0

0

0

t

With these rules our activity graph becomes an
event graph:

A

B

C

D

E

F

G

H

I
finish

s

D' G'

F'

I'
start

3

2

3

0

0

1

0

0

2

0
4

0 2

0

0

0

3

1 0

The longest path from start to finish gives the earliest
possible completion time of the project. We can easily
modify our shortest-path algorithm to give the longest
path in the case of an acyclic graph -- just reverse the
inequalities.

A

B

C

D

E

F

G

H

I
finish

s

D' G'

F'

I'
start

3

2

3

0

0

1

0

0

2

0
4

0 2

0

0

0

3

1 00

3 6 6 9

9 10
10

3 3 5

2

3

3

4

The Earliest Completion of each node is shown on the
graph in green.

If we start at the finish node and do a reverse-topological
ordering, we can also compute the Latest Completion
time for each node, which is the last time the node can
be completed without delaying the project's overall
completion time. The LC and EC times for the finish node
a are the same. For other nodes, if we have

X Y
t

then X.LC = Y.LC - t

If we have
Y1

Y2

Y3

X

t1
t2

t3

then X.LC = min{Y1.LC-t1, Y2.LC-t2, Y3.LC-t3}

A

B

C

D

E

F

G

H

I
finish

s

D' G'

F'

I'
start

3

2

3

0

0

1

0

0

2

0
4

0 2

0

0

0

3

1 00

3 6 6 9

9 10
10

3 5 7

2

3

5

7

Here is our event graph with the LC times written in red:

0

3 6 6 9

9 10
104 6 9

4

5

7

9

For any node the difference between the earliest time it
can be completed and the latest time it must be
completed by to avoid delaying the project is called that
activity's slack time:

Slack = LC - EC

A

B

C

D

E

F

G

H

I
finish

s

D' G'

F'

I'
start

3

2

3

0

0

1

0

0

2

0
4

0 2

0

0

0

3

1 00

3 6 6 9

9 10
10

3 5 7

2

3

5

7

0

3 6 6 9

9 10
104 6 9

4

5

7

9

On the longest path through the graph, EC = LC at every
node, so the slack time is 0. This is called the critical
path for the graph. Any delay on the critical path delays
the whole project. Much project planning goes into
ensuring that activities on the critical path stay on
schedule.

The critical path is shown in red.

